Format

Send to

Choose Destination
See comment in PubMed Commons below
Physiol Behav. 2011 Sep 1;104(3):507-14. doi: 10.1016/j.physbeh.2011.05.021. Epub 2011 May 27.

Immune function and HPA axis activity in free-ranging rhesus macaques.

Author information

1
Department of Comparative Human Development, The University of Chicago, Chicago, IL 60637, USA. hoffmanc@uchicago.edu

Abstract

In mammals, the hypothalamic-pituitary-adrenal (HPA) axis and immune system play an important role in the maintenance of homeostasis. Dysregulation of either system resulting, for example, from psychosocial or reproductive stress increases susceptibility to disease and mortality risk, especially in aging individuals. In a study of free-ranging rhesus macaques, we examined how female age, reproductive state, social rank, and body condition influence (i) aspects of cytokine biology (plasma concentrations of interleukin-1 receptor antagonist (IL-1ra), IL-6 and IL-8), and (ii) HPA axis activity (plasma and fecal glucocorticoid levels). We also assessed individual differences in cytokine and hormone concentrations over time to determine their consistency and to investigate relations between these two indicators of physiological regulation and demand. Female monkeys showed marked increases in HPA axis activity during pregnancy and lactation, and increased circulating levels of IL-1ra with advancing age. Inter-individual differences in IL-1ra and IL-8 were consistent over successive years, suggesting that both are stable, trait-like characteristics. Furthermore, the concentrations of fecal glucocorticoid hormones in non-pregnant, non-lactating females were correlated with their plasma cortisol and IL-8 concentrations. Some individuals showed permanently elevated cytokine levels or HPA axis activity, or a combination of the two, suggesting chronic stress or disease. Our results enhance our understanding of within- and between-individual variation in cytokine levels and their relationship with glucocorticoid hormones in free-ranging primates. These findings can provide the basis for future research on stress and allostatic load in primates.

PMID:
21635909
PMCID:
PMC3133459
DOI:
10.1016/j.physbeh.2011.05.021
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center