Send to

Choose Destination
Neuropharmacology. 1990 May;29(5):445-52.

Modulation of mu, delta and kappa opioid receptors in rat brain by metal ions and histidine.

Author information

Department of Pharmacology, College of Medicine, Ohio State University, Columbus 43210-1239.


The effect of zinc (Zn2+) and several other trace elements was studied on the binding of the opioid receptor agonists [3H] DAGO [( ([Tyr-D-Ala-Gly-Methyl-Phe-Glyol]-enkephalin)a, [3H] DSTLE ([Tyr-D-Ser-Gly-Phe-Leu-Thr]-enkephalin) and [3H] EKC (ethylketocyclazocine), which are specific for the mu, delta and kappa opioid receptors, respectively, in the cerebral cortex of the rat. Physiological concentrations of zinc were inhibitory to mu receptor binding, whereas the delta and kappa receptors were relatively insensitive to this inhibition. Scatchard analysis, using these opioid agonists, revealed curvilinear plots; concentrations of zinc equal to or less than the IC50 (the concentration of cation which caused 50% inhibition of the binding of opioid ligand to its receptor), increased the KD (the dissociation constant) of all three subtypes of receptor, with no effect on the Bmax (the maximum number of binding sites) and abolished the high affinity sites of the delta and kappa receptors. Copper, cadmium and mercury also inhibited the binding of these ligands to their receptors. Histidine was most effective in preventing the inhibitory effects of zinc and copper, whereas it was less effective on cadmium and without any effect on the inhibition caused by mercury. Magnesium and manganese were stimulatory to opioid receptor binding, whereas cobalt and nickel had dual (stimulatory and inhibitory) effects. Non-inhibitory concentrations of zinc significantly decreased the stimulatory effects of magnesium and manganese on the mu and delta receptors, suggesting that part of the effect of zinc was through prevention of the actions of stimulatory cations.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center