Format

Send to

Choose Destination
Dev Biol. 2011 Sep 1;357(1):42-52. doi: 10.1016/j.ydbio.2011.05.662. Epub 2011 May 23.

Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans.

Author information

1
School of Biological and Chemical Sciences, Queen Mary, University of London, UK. p.ungerer@qmul.ac.uk

Abstract

Within euarthropods, the morphological and molecular mechanisms of early nervous system development have been analysed in insects and several representatives of chelicerates and myriapods, while data on crustaceans are fragmentary. Neural stem cells (neuroblasts) generate the nervous system in insects and in higher crustaceans (malacostracans); in the remaining euarthropod groups, the chelicerates (e.g. spiders) and myriapods (e.g. millipedes), neuroblasts are missing. In the latter taxa, groups of neural precursors segregate from the neuroectoderm and directly differentiate into neurons and glial cells. In all euarthropod groups, achaete-scute homologues are required for neuroblast/neural precursor group formation. In the insects Drosophila melanogaster and Tribolium castaneum achaete-scute homologues are initially expressed in clusters of cells (proneural clusters) in the neuroepithelium but expression becomes restricted to the future neuroblast. Subsequently genes such as snail and prospero are expressed in the neuroblasts which are required for asymmetric division and differentiation. In contrast to insects, malacostracan neuroblasts do not segregate into the embryo but remain in the outer neuroepithelium, similar to vertebrate neural stem cells. It has been suggested that neuroblasts are present in another crustacean group, the branchiopods, and that they also remain in the neuroepithelium. This raises the questions how the molecular mechanisms of neuroblast selection have been modified during crustacean and insect evolution and if the segregation or the maintenance of neuroblasts in the neuroepithelium represents the ancestral state. Here we take advantage of the recently published Daphnia pulex (branchiopod) genome and identify genes in Daphnia magna that are known to be required for the selection and asymmetric division of neuroblasts in the fruit fly D. melanogaster. We unambiguously identify neuroblasts in D. magna by molecular marker gene expression and division pattern. We show for the first time that branchiopod neuroblasts divide in the same pattern as insect and malacostracan neuroblasts. Furthermore, in contrast to D. melanogaster, neuroblasts are not selected from proneural clusters in the branchiopod. Snail rather than ASH is the first gene to be expressed in the nascent neuroblasts suggesting that ASH is not required for the selection of neuroblasts as in D. melanogaster. The prolonged expression of ASH in D. magna furthermore suggests that it is involved in the maintenance of the neuroblasts in the neuroepithelium. Based on these and additional data from various representatives of arthropods we conclude that the selection of neural precursors from proneural clusters as well as the segregation of neural precursors represents the ancestral state of neurogenesis in arthropods. We discuss that the derived characters of malacostracans and branchiopods - the absence of neuroblast segregation and proneural clusters - might be used to support or reject the possible groupings of paraphyletic crustaceans.

PMID:
21624360
DOI:
10.1016/j.ydbio.2011.05.662
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center