Format

Send to

Choose Destination
See comment in PubMed Commons below
Eukaryot Cell. 2011 Jul;10(7):869-83. doi: 10.1128/EC.00237-10. Epub 2011 May 27.

Role of Hsl7 in morphology and pathogenicity and its interaction with other signaling components in the plant pathogen Ustilago maydis.

Author information

1
Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA.

Abstract

The phytopathogenic fungus Ustilago maydis undergoes a dimorphic transition in response to mating pheromone, host, and environmental cues. On a solid medium deficient in ammonium (SLAD [0.17% yeast nitrogen base without ammonium sulfate or amino acids, 2% dextrose, 50 μM ammonium sulfate]), U. maydis produces a filamentous colony morphology, while in liquid SLAD, the cells do not form filaments. The p21-activated protein kinases (PAKs) play a substantial role in regulating the dimorphic transition in fungi. The PAK-like Ste20 homologue Smu1 is required for a normal response to pheromone, via upregulation of pheromone expression, and virulence, and its disruption affects both processes. Our experiments suggest that Smu1 also regulates cell length and the filamentous response on solid SLAD medium. Yeast two-hybrid analysis suggested an Hsl7 homologue as a potential interacting partner of Smu1, and a unique open reading frame for such an arginine methyltransferase was detected in the U. maydis genome sequence. Hsl7 regulates cell length and the filamentous response to solid SLAD in a fashion opposite to that of Smu1, but neither overexpression nor disruption of hsl7 attenuates virulence. Simultaneous disruption of hsl7 and overexpression of smu1 lead to a hyperfilamentous response on solid SLAD. Moreover, only this double mutant strain forms filaments in liquid SLAD. The double mutant strain was also significantly reduced in virulence. A similar filamentous response in both solid and liquid SLAD was observed in strains lacking another PAK-like protein kinase involved in cytokinesis and polar growth, Cla4. Our data suggest that Hsl7 may regulate cell cycle progression, while both Smu1 and Cla4 appear to be involved in the filamentous response in U. maydis.

PMID:
21622903
PMCID:
PMC3147425
DOI:
10.1128/EC.00237-10
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center