Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Bot. 2009 Oct;96(10):1779-86. doi: 10.3732/ajb.0800410. Epub 2009 Sep 3.

Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees.

Author information

  • 1Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts 02215 USA.

Abstract

Leaf-level responses to increases in atmospheric carbon dioxide (CO(2)) concentrations could have large implications for water and carbon cycles. We investigated whether stomatal density, guard cell length, and intrinsic water use efficiency (iWUE) of 27 individual trees growing at the Arnold Arboretum in Boston, Massachusetts have responded to changing environmental conditions over the last 100 years. We examined leaves from 74 herbarium specimens collected from three genera-Acer (maples), Quercus (oaks), and Carpinus (hornbeams)-from 1893 to 2006. During this period, global average atmospheric CO(2) concentrations increased by approximately 29% (86 ppm), and temperatures in Boston increased by 1.8°C. Stomatal density and guard cell length were negatively correlated in oaks and hornbeams. Although stomatal density declined and guard cell length increased over time, the changes were not dependent on the magnitude of changes in CO(2) concentrations. Intrinsic WUE did not change significantly over time. Our findings suggest that iWUE may not respond to changes in CO(2) concentrations over the lifetimes of individual trees, possibly because of compensating changes in stomatal density and guard cell size. We provide an example of a method that can enable researchers to differentiate between genetic and plastic responses to global change in long-lived trees.

PMID:
21622298
DOI:
10.3732/ajb.0800410
[PubMed]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center