Sustained neuronal activity generated by glial plasticity

J Neurosci. 2011 May 25;31(21):7637-47. doi: 10.1523/JNEUROSCI.5783-10.2011.

Abstract

Astrocytes release gliotransmitters, notably glutamate, that can affect neuronal and synaptic activity. In particular, astrocytic glutamate release results in the generation of NMDA receptor (NMDA-R)-mediated slow inward currents (SICs) in neurons. However, factors underlying the emergence of SICs and their physiological roles are essentially unknown. Here we show that, in acute slices of rat somatosensory thalamus, stimulation of lemniscal or cortical afferents results in a sustained increase of SICs in thalamocortical (TC) neurons that outlasts the duration of the stimulus by 1 h. This long-term enhancement of astrocytic glutamate release is induced by group I metabotropic glutamate receptors and is dependent on astrocytic intracellular calcium. Neuronal SICs are mediated by extrasynaptic NR2B subunit-containing NMDA-Rs and are capable of eliciting bursts. These are distinct from T-type Ca(2+) channel-dependent bursts of action potentials and are synchronized in neighboring TC neurons. These findings describe a previously unrecognized form of excitatory, nonsynaptic plasticity in the CNS that feeds forward to generate local neuronal firing long after stimulus termination.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Afferent Pathways / physiology
  • Animals
  • Male
  • Neuroglia / physiology*
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*
  • Rats
  • Rats, Wistar
  • Time Factors