Format

Send to

Choose Destination
See comment in PubMed Commons below
ACS Nano. 2011 Jun 28;5(6):4688-97. doi: 10.1021/nn200546k. Epub 2011 Jun 6.

Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays.

Author information

1
Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States.

Abstract

The challenge of optimizing both performance and safety in nanomaterials hinges on our ability to resolve which structural features lead to desired properties. It has been difficult to draw meaningful conclusions about biological impacts from many studies of nanomaterials due to the lack of nanomaterial characterization, unknown purity, and/or alteration of the nanomaterials by the biological environment. To investigate the relative influence of core size, surface chemistry, and charge on nanomaterial toxicity, we tested the biological response of whole animals exposed to a matrix of nine structurally diverse, precision-engineered gold nanoparticles (AuNPs) of high purity and known composition. Members of the matrix include three core sizes and four unique surface coatings that include positively and negatively charged headgroups. Mortality, malformations, uptake, and elimination of AuNPs were all dependent on these parameters, showing the need for tightly controlled experimental design and nanomaterial characterization. Results presented herein illustrate the value of an integrated approach to identify design rules that minimize potential hazard.

PMID:
21609003
PMCID:
PMC3124923
DOI:
10.1021/nn200546k
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center