Format

Send to

Choose Destination
See comment in PubMed Commons below
Protein Expr Purif. 2011 Sep;79(1):128-36. doi: 10.1016/j.pep.2011.05.004. Epub 2011 May 14.

Refolding and characterization of methionine adenosyltransferase from Euglena gracilis.

Author information

1
Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain.

Abstract

Methionine adenosyltransferase from Euglena gracilis (MATX) is a recently discovered member of the MAT family of proteins that synthesize S-adenosylmethionine. Heterologous overexpression of MATX in Escherichia coli rendered the protein mostly in inclusion bodies under all conditions tested. Therefore, a refolding and purification procedure from these aggregates was developed to characterize the enzyme. Maximal recovery was obtained using inclusion bodies devoid of extraneous proteins by washing under mild urea (2M) and detergent (5%) concentrations. Refolding was achieved in two steps following solubilization in the presence of Mg(2+); chaotrope dilution to <1M and dialysis under reducing conditions. Purified MATX is a homodimer that exhibits Michaelis kinetics with a V(max) of 1.46 μmol/min/mg and K(m) values of approximately 85 and 260 μM for methionine and ATP, respectively. The activity is dependent on Mg(2+) and K(+) ions, but is not stimulated by dimethylsulfoxide. MATX exhibits tripolyphosphatase activity that is stimulated in the presence of S-adenosylmethionine. Far-UV circular dichroism revealed β-sheet and random coil as the main secondary structure elements of the protein. The high level of sequence conservation allowed construction of a structural model that preserved the main features of the MAT family, the major changes involving the N-terminal domain.

PMID:
21605677
DOI:
10.1016/j.pep.2011.05.004
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center