Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1990 May 20;213(2):385-91.

Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects.

Author information

  • 1Institute of Protein Research, Academy of Sciences of the U.S.S.R., Moscow Region.


Using the heat capacity values for amino acid side-chains and the peptide unit determined in the accompanying paper, we calculated the partial heat capacities of the unfolded state for four proteins (apomyoglobin, apocytochrome c, ribonuclease A, lysozyme) in aqueous solution in the temperature range from 5 to 125 degrees C, with an assumption that the constituent amino acid residues contribute additively to the integral heat capacity of a polypeptide chain. These ideal heat capacity functions of the extended polypeptide chains were compared with the calorimetrically determined heat capacity functions of the heat and acid-denatured proteins. The average deviation of the experimental functions from the calculated ideal ones in the whole studied temperature range does not exceed the experimental error (5%). Therefore, the heat-denatured state of a protein, in solutions with acidic pH preventing aggregation, approximates well the completely unfolded state of this macromolecule. The heat capacity change caused by hydration of amino acid residues upon protein unfolding was also determined and it was shown that this is the major contributor to the observed heat capacity effect of unfolding. Its value is different for different proteins and correlates well with the surface area of non-polar groups exposed upon unfolding. The heat capacity effect due to the configurational freedom gain by the polypeptide chain was found to contribute only a small part of the overall heat capacity change on unfolding.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center