Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2011 Jul 1;410(1):131-45. doi: 10.1016/j.jmb.2011.04.077. Epub 2011 May 13.

Regulating SR protein phosphorylation through regions outside the kinase domain of SRPK1.

Author information

1
Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.

Erratum in

  • J Mol Biol. 2011 Aug 12;411(2):511. Whitehouse, Jennifer [corrected to Whitesides, Jennifer].

Abstract

SR proteins (splicing factors containing arginine-serine repeats) are essential splicing factors whose phosphorylation by the SR-specific protein kinase (SRPK) family regulates nuclear localization and mRNA processing activity. In addition to an N-terminal extension with unknown function, SRPKs contain a large, nonhomologous spacer insert domain (SID) that bifurcates the kinase domain and anchors the kinase in the cytoplasm through interactions with chaperones. While structures for the kinase domain are now available, constructs that include regions outside this domain have been resistant to crystallographic elucidation. To investigate the conformation of the full-length kinase and the functional role of noncatalytic regions, we performed hydrogen-deuterium exchange and steady-state kinetic experiments on SRPK1. Unlike the kinase core, the large SID lacks stable, hydrogen-bonded structure and may provide an intrinsically disordered region for chaperone interactions. Conversely, the N-terminus, which positively regulates SR protein binding, adopts a stable structure when the insert domain is present and stabilizes a docking groove in the large lobe of the kinase domain. The N-terminus and SID equally enhance SR protein turnover by altering the stability of several catalytic loop segments. These studies reveal that SRPK1 uses an N-terminal extension and a large, intrinsically disordered region juxtaposed to a stable structure to facilitate high-affinity SR protein interactions and phosphorylation rates.

PMID:
21600902
PMCID:
PMC3121894
DOI:
10.1016/j.jmb.2011.04.077
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center