Format

Send to

Choose Destination
Biochim Biophys Acta. 1990 May 9;1024(1):152-8.

Partitioning of hydrophobic probes into lipopolysaccharide bilayers.

Author information

1
Department of Molecular and Cell Biology, University of California, Berkeley.

Abstract

Lipophilic solutes permeate rapidly through lipid bilayer membranes. However, the outer membrane of enteric bacteria, which is composed of a lipopolysaccharide monolayer outer leaflet and the glycerophospholipid inner leaflet, shows extremely low permeability to hydrophobic solutes. In order to examine the cause of this exceptionally low permeability, the lipid/water partition behavior of various lipophilic probes was determined by using lipopolysaccharides of various chemotypes and glycerophospholipids. With all probes, under many different conditions, the lipopolysaccharide/water partition coefficients were generally about an order of magnitude smaller than the phospholipid/water partition coefficients, and this result is consistent with the low permeability of the lipopolysaccharide monolayer, and hence the asymmetric bilayer found in the outer membrane. Furthermore, organic polycations significantly increased the partition of N-phenylnaphthylamine into lipopolysaccharides, a result again consistent with the permeability-increasing effect of such cations on intact outer membrane. Very defective, 'deep rough' lipopolysaccharides of chemotypes Rd2, Rd1 and Re, had only slightly (20-75%) higher partition coefficients in comparison with the more complete lipopolysaccharides, and this difference is probably not enough to explain the approximately 100-fold increase in lipophile permeability seen in deep rough strains.

PMID:
2159802
DOI:
10.1016/0005-2736(90)90218-d
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center