Send to

Choose Destination
Biosci Biotechnol Biochem. 2011;75(5):953-9. Epub 2011 May 20.

Xylose triggers reversible phosphorylation of XlnR, the fungal transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus oryzae.

Author information

Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan.


XlnR is a transcription factor that mediates D-xylose-triggered induction of xylanolytic and cellulolytic genes in Aspergillus. In order to clarify the molecular mechanisms underlying XlnR-mediated induction, Aspergillus oryzae XlnR was fused with the c-myc tag and examined by Western blotting. Phosphate-affinity SDS-PAGE revealed that XlnR was present as a mixture of variously phosphorylated forms in the absence of D-xylose, and that D-xylose triggered additional phosphorylation of the protein. D-Xylose-triggered phosphorylation was a rapid process occurring within 5 min prior to the accumulation of xynG2 mRNA, and removal of D-xylose caused slow dephosphorylation, leading to less-phosphorylated forms. At 30 min after removal, the phosphorylation status was almost identical to that in the absence of D-xylose, and the level of xynG2 mRNA started to decrease. These results indicate that XlnR is highly phosphorylated when it is active in transactivation, implying that D-xylose-triggered reversible phosphorylation controls XlnR activity.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center