Format

Send to

Choose Destination
Transpl Immunol. 2011 Jul;25(1):20-6. doi: 10.1016/j.trim.2011.05.001. Epub 2011 May 10.

Rapamycin-conditioned, alloantigen-pulsed myeloid dendritic cells present donor MHC class I/peptide via the semi-direct pathway and inhibit survival of antigen-specific CD8(+) T cells in vitro and in vivo.

Author information

1
Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15238, USA. freemanm@upmc.edu

Abstract

Dendritic cells (DC) are "professional" bone marrow-derived antigen (Ag)-presenting cells of interest both as therapeutic targets and potential cellular vaccines due to their ability to regulate innate and adaptive immunity. Harnessing the inherent tolerogenicity of DC is a promising and incompletely explored approach to the prevention of allograft rejection. Previously, we and others have reported the ability of pharmacologically-modified DC, that resist maturation, to inhibit CD4(+) T cell responses and prolong allograft survival. Here we evaluated the ability of murine myeloid DC conditioned with the immunosuppressive pro-drug rapamycin (RAPA) to acquire and directly present alloAg to syngeneic CD8(+) T cells. RAPA-conditioned DC (RAPA-DC) pulsed with allogeneic splenocyte lysate acquired and expressed donor MHC class I and enhanced the apoptotic death of directly-reactive donor Ag-specific CD8(+) T cells in vitro. Moreover, following their adoptive transfer, they reduced the survival of these T cells in vivo. The ability of RAPA-DC to inhibit the survival of alloAg-specific CD8(+) T cells provides a potential mechanism by which host-derived DC may act as negative regulators of T cell alloreactivity and support donor-specific unresponsiveness. Adoptive cell therapy with alloAg-pulsed RAPA-DC may offer an effective approach to suppression of alloimmunity, with reduced dependence on systemic immunosuppression.

PMID:
21596137
PMCID:
PMC3128670
DOI:
10.1016/j.trim.2011.05.001
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center