Format

Send to

Choose Destination
See comment in PubMed Commons below
Breast Cancer Res. 2011 May 19;13(3):R52. doi: 10.1186/bcr2883.

Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes.

Author information

1
Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands.

Abstract

INTRODUCTION:

Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth factor receptor and human epidermal growth factor receptor 2. Yet, the direct role of IGF-1R signaling itself in antiestrogen resistance remains obscure. In the present study, we sought to elucidate whether antiestrogen resistance is induced directly by IGF-1R signaling in response to its ligand IGF-1 stimulation.

METHODS:

A breast cancer cell line ectopically expressing human wild-type IGF-1R, MCF7/IGF-1R, was established by retroviral transduction and colony selection. Cellular antiestrogen sensitivity was evaluated under estrogen-depleted two-dimensional (2D) and 3D culture conditions. Functional activities of the key IGF-1R signaling components in antiestrogen resistance were assessed by specific kinase inhibitor compounds and small interfering RNA.

RESULTS:

Ectopic expression of IGF-1R in ER-positive MCF7 human breast cancer cells enhanced IGF-1R tyrosine kinase signaling in response to IGF-1 ligand stimulation. The elevated IGF-1R signaling rendered MCF7/IGF-1R cells highly resistant to the antiestrogens tamoxifen and fulvestrant. This antiestrogen-resistant phenotype involved mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase/protein kinase B pathways downstream of the IGF-1R signaling hub and was independent of ER signaling. Intriguingly, a MAPK/ERK-dependent agonistic behavior of tamoxifen at low doses was triggered in the presence of IGF-1, showing a mild promitogenic effect and increasing ER transcriptional activity.

CONCLUSIONS:

Our data provide evidence that the IGF-1/IGF-1R signaling axis may play a causal role in antiestrogen resistance of breast cancer cells, despite continuous suppression of ER transcriptional function by antiestrogens.

PMID:
21595894
PMCID:
PMC3218939
DOI:
10.1186/bcr2883
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center