Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1990 Apr;258(4 Pt 1):L201-6.

Bioelectric properties of fetal alveolar epithelial monolayers.

Author information

  • 1Department of Paediatrics, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.

Abstract

To investigate the bioelectric properties on one of the cell types that line the distal lung unit, we isolated type II alveolar epithelium from 18- to 20-day gestation fetal rats (term = 22 days) and grew them on collagen-coated nitrocellulose filters. Amiloride impaired ion transport in a dose-dependent fashion (10(-4) to 10(-6) M) with 10(-4) M decreasing potential difference (PD) (mean +/- SE, 2.0 +/- 0.49 to 0.9 +/- 0.26 mV, P less than 0.01, lumen negative) and short-circuit current (Isc) (7.0 +/- 1.0 to 2.4 +/- 0.64 uA/cm2, P less than 0.01) without affecting resistance (R) (241 +/- 33 to 216 +/- 41 omega. cm2). Benzamil (10(-5) M) but not dimethylamiloride (10(-5) M) decreased Isc. Terbutaline (10(-3) M) increased PD from 1.2 +/- 0.13 to 3.3 +/- 0.40 mV (P less than 0.01), and application of amiloride (10(-4) M) after terbutaline reduced PD and Isc to less than initial base-line values. The Na(+)-K(+)-2Cl- cotransport inhibitors bumetanide (10(-4) M) and furosemide (10(-3) M) had no effect on PD and Isc either before or after terbutaline. Neither the Cl- channel blocker diphenylamine-2-carboxylate (10(-3) M) nor the Na(+)-glucose cotransport inhibitor phloridzin (10(-3) M) affected the bioelectric properties. Fetal type II alveolar epithelium in primary culture actively transport ions and, on the basis of inhibitor-agonist experiments, probably do not secrete Cl- but absorb Na+ through Na+ channels.

PMID:
2159225
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center