Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2011 Jun 13;12(6):2375-81. doi: 10.1021/bm200463e. Epub 2011 May 24.

Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.

Author information

1
Department of Molecular Biology, University of Wyoming, Laramie, WY 82070, USA.

Abstract

As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.

PMID:
21574576
PMCID:
PMC3503542
DOI:
10.1021/bm200463e
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center