Send to

Choose Destination
Science. 1990 Mar 23;247(4949 Pt 1):1474-7.

The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity.

Author information

Department of Neurology and Neurological Sciences, Stanford University Medical School, CA 94305.


High concentrations of potent N-methyl-D-aspartate (NMDA) agonists can trigger degeneration of cultured mouse cortical neurons after an exposure of only a few minutes; in contrast, selective non-NMDA agonists or low levels of NMDA agonists require exposures of several hours to induce comparable damage. The dihydropyridine calcium channel antagonist nifedipine was used to test whether this slow neurotoxicity is mediated by a calcium influx through voltage-gated channels. Nifedipine had little effect on the widespread neuronal degeneration induced by brief exposure to high concentrations of NMDA but substantially attenuated the neurotoxicity produced by 24-hour exposure to submaximal concentrations of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or quinolinate. Calcium ion influx through dihydropyridine-sensitive, voltage-dependent calcium channels may be an important step in the neuronal injury induced by the prolonged activation of NMDA or non-NMDA glutamate receptors.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center