Send to

Choose Destination
Exp Physiol. 2011 Jul;96(7):674-80. doi: 10.1113/expphysiol.2011.058404. Epub 2011 May 13.

Intradermal microdialysis of hypertonic saline attenuates cutaneous vasodilatation in response to local heating.

Author information

Department of Kinesiology and Applied Physiology, Newark, DE 19716, USA.


We tested the hypothesis that microdialysis of hypertonic saline would attenuate the skin blood flow response to local heating. Seventeen healthy subjects (23 ± 1 years old) were studied. In one group (n = 9), four microdialysis fibres were placed in the forearm skin and infused with the following: (1) Ringer solution; (2) normal saline (0.9% NaCl); (3) hypertonic saline (3% NaCl); and (4) 10 mm l-NAME. A second group (n = 8) was infused with the following: (1) normal saline; (2) hypertonic saline; (3) normal saline + l-NAME; and (4) hypertonic saline + l-NAME. Red blood cell flux was measured via laser Doppler flowmetry during local heating to 42°C. Site-specific maximal vasodilatation was determined by infusing 28 mm sodium nitroprusside while the skin was heated to 43°C. Data were expressed as the percentage of maximal cutaneous vascular conductance (%CVC(max)). The local heating response at the Ringer solution and normal saline sites did not differ (n = 9; initial peak Ringer solution, 69 ± 6 versus normal saline, 66 ± 2%CVC(max); plateau Ringer solution, 89 ± 4 versus normal saline, 89 ± 5%CVC(max)). Hypertonic saline reduced the initial peak (n = 9; normal saline, 66 ± 2 versus hypertonic saline, 54 ± 4%CVC(max); P < 0.05) and plateau (normal saline, 89 ± 5 versus hypertonic saline, 78 ± 2%CVC(max); P < 0.05) compared with normal saline. Plateau %CVC(max) was attenuated to a similar value at the normal saline + l-NAME and hypertonic saline + l-NAME sites (n = 8; normal saline + l-NAME, 39 ± 6 and hypertonic saline + l-NAME, 39 ± 5%CVC(max)). The nitric oxide contribution (plateau %CVC(max) - l-NAME plateau %CVC(max)) was lower at the hypertonic saline site (normal saline, 55 ± 6 versus hypertonic saline, 35 ± 4; P < 0.01). These data suggest an effect of salt on the cutaneous response to local heating, which may be mediated through a decreased production and/or availability of nitric oxide.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center