Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 2011 Jun 24;109(1):71-9. doi: 10.1161/CIRCRESAHA.111.246512. Epub 2011 May 12.

A model of canine purkinje cell electrophysiology and Ca(2+) cycling: rate dependence, triggered activity, and comparison to ventricular myocytes.

Author information

1
Department of Biomedical Engineering and Cardiac Bioelectricity and Arrhythmia Center, Campus Box 1097, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63112, USA.

Abstract

Purkinje cells (Pcell) are characterized by different electrophysiological properties and Ca(2+) cycling processes than ventricular myocytes (Vcell) and are frequently involved in ventricular arrhythmias. Yet, the mechanistic basis for their arrhythmic vulnerability is not completely understood. The objectives were to: (1) characterize Pcell electrophysiology, Ca(2+) cycling, and their rate dependence; (2) investigate mechanisms underlying Pcell arrhythmogenicity; and compare Pcell and Vcell electrophysiology, Ca(2+) cycling, and arrhythmic properties. We developed a new mathematical model of Pcell. The Ca(2+) subsystem includes spatial organization and receptors distribution unique to Pcell. Results were: (1) in Pcell and Vcell, Na(+) accumulation via its augmentation of repolarizing I(NaK) dominates action potential duration adaptation and, in Pcell, I(NaL) contributes additional action potential duration shortening at short cycle length; (2) steep Pcell restitution is attributable to slow recovery of I(NaL); (3) biphasic Ca(2+) transients of Pcell reflect the delay between Ca(2+) release from junctional sarcoplasmic reticulum and corbular sarcoplasmic reticulum; (4) Pcell Ca(2+) alternans, unlike Vcell, can develop without inducing action potential alternans; (5) Pcell action potential alternans develops at a shorter cycle length than Vcell, with increased subcellular heterogeneity of Ca(2+) cycling attributable to refractoriness of Ca(2+) release from corbular sarcoplasmic reticulum and junctional sarcoplasmic reticulum; (6) greater Pcell vulnerability to delayed afterdepolarizations is attributable to higher sarcoplasmic reticulum Ca(2+) content and ionic currents that reduce excitation threshold and promote triggered activity; and (7) early after depolarizations generation in Pcell is mostly attributable to reactivation of I(NaL2), whereas I(CaL) plays this role in Vcell. Steeper rate dependence of action potential and Ca(2+) transients, central peripheral heterogeneity of Ca(2+) cycling, and distinct ion channel profile underlie greater arrhythmic vulnerability of Pcell compared to Vcell.

PMID:
21566216
PMCID:
PMC3143030
DOI:
10.1161/CIRCRESAHA.111.246512
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center