Format

Send to

Choose Destination
Bioinformatics. 2011 Jul 1;27(13):1798-805. doi: 10.1093/bioinformatics/btr277. Epub 2011 May 10.

HiTRACE: high-throughput robust analysis for capillary electrophoresis.

Author information

1
School of Electrical Engineering, Korea University, Seoul 136-713, Republic of Korea. sryoon@korea.ac.kr

Abstract

MOTIVATION:

Capillary electrophoresis (CE) of nucleic acids is a workhorse technology underlying high-throughput genome analysis and large-scale chemical mapping for nucleic acid structural inference. Despite the wide availability of CE-based instruments, there remain challenges in leveraging their full power for quantitative analysis of RNA and DNA structure, thermodynamics and kinetics. In particular, the slow rate and poor automation of available analysis tools have bottlenecked a new generation of studies involving hundreds of CE profiles per experiment.

RESULTS:

We propose a computational method called high-throughput robust analysis for capillary electrophoresis (HiTRACE) to automate the key tasks in large-scale nucleic acid CE analysis, including the profile alignment that has heretofore been a rate-limiting step in the highest throughput experiments. We illustrate the application of HiTRACE on 13 datasets representing 4 different RNAs, 3 chemical modification strategies and up to 480 single mutant variants; the largest datasets each include 87 360 bands. By applying a series of robust dynamic programming algorithms, HiTRACE outperforms prior tools in terms of alignment and fitting quality, as assessed by measures including the correlation between quantified band intensities between replicate datasets. Furthermore, while the smallest of these datasets required 7-10 h of manual intervention using prior approaches, HiTRACE quantitation of even the largest datasets herein was achieved in 3-12 min. The HiTRACE method, therefore, resolves a critical barrier to the efficient and accurate analysis of nucleic acid structure in experiments involving tens of thousands of electrophoretic bands.

PMID:
21561922
DOI:
10.1093/bioinformatics/btr277
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center