Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Jul 1;286(26):22965-70. doi: 10.1074/jbc.M111.239509. Epub 2011 May 9.

Biophysical analysis of influenza A virus RNA promoter at physiological temperatures.

Author information

1
Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA.

Abstract

Each segment of the influenza A virus (IAV) genome contains conserved sequences at the 5'- and 3'-terminal ends, which form the promoter region necessary for polymerase binding and initiation of RNA synthesis. Although several models of interaction have been proposed it remains unclear if these two short, partially complementary, and highly conserved sequences can form a stable RNA duplex at physiological temperatures. First, our time-resolved FRET analysis revealed that a 14-mer 3'-RNA and a 15-mer 5'-RNA associate in solution, even at 42 °C. We also found that a nonfunctional RNA promoter containing the 3'-G3U mutation, as well as a promoter containing the compensatory 3'-G3U/C8A mutations, was able to form a duplex as efficiently as wild type. Second, UV melting analysis demonstrated that the wild-type and mutant RNA duplexes have similar stabilities in solution. We also observed an increase in thermostability for a looped promoter structure. The absence of differences in the stability and binding kinetics between wild type and a nonfunctional sequence suggests that the IAV promoter can be functionally inactivated without losing the capability to form a stable RNA duplex. Finally, using uridine specific chemical probing combined with mass spectrometry, we confirmed that the 5' and 3' sequences form a duplex which protects both RNAs from chemical modification, consistent with the previously published panhandle structure. These data support that these short, conserved promoter sequences form a stable complex at physiological temperatures, and this complex likely is important for polymerase recognition and viral replication.

PMID:
21555520
PMCID:
PMC3123064
DOI:
10.1074/jbc.M111.239509
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center