Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2011 Jun 15;83(12):4863-70. doi: 10.1021/ac200515x. Epub 2011 May 18.

Optical tweezers for synchrotron radiation probing of trapped biological and soft matter objects in aqueous environments.

Author information

  • 1European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex, France.


Investigations of single fragile objects manipulated by optical forces with high brilliance X-ray beams may initiate the development of new research fields such as protein crystallography in an aqueous environment. We have developed a dedicated optical tweezers setup with a compact, portable, and versatile geometry for the customary manipulation of objects for synchrotron radiation applications. Objects of a few micrometers up to a few tens of micrometers size can be trapped for extended periods of time. The selection and positioning of single objects out of a batch of many can be performed semi-automatically by software routines. The performance of the setup has been tested by wide-angle and small-angle X-ray scattering experiments on single optically trapped starch granules, using a synchrotron radiation microbeam. We demonstrate here for the first time the feasibility of microdiffraction on optically trapped protein crystals. Starch granules and insulin crystals were repeatedly raster-scanned at about 50 ms exposure/raster-point up to the complete loss of the structural order. Radiation damage in starch granules results in the appearance of low-angle scattering due to the breakdown of the polysaccharide matrix. For insulin crystals, order along the densely packed [110] direction is preferentially maintained until complete loss of long-range order.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center