Send to

Choose Destination
Anat Rec (Hoboken). 2011 Jun;294(6):1035-44. doi: 10.1002/ar.21383. Epub 2011 May 3.

Improved assessment of ex vivo brainstem neuroanatomy with high-resolution MRI and DTI at 7 Tesla.

Author information

Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 162, Barcelona 08036, Spain.


The aim of the present work was to provide the topography of the main gray nuclei and white matter tracts of the human brainstem at 7 Tesla (7 T) high-field magnetic resonance imaging (MRI) using structural imaging (T1) and diffusion tensor imaging (DTI). Both imaging techniques represent a new field of increasing interest for its potential neuroanatomic and neuropathologic value. Brainstems were obtained postmortem from human donors, fixated by intracarotid perfusion of 10% neutral buffered formalin, and scanned in a Bruker BioSpec 7 T horizontal scanner. 3D-data sets were acquired using the modified driven equilibrium Fourier transform (MDEFT) sequence and Spin Echo-DTI (SE-DTI) sequence was used for DTI acquisition. High-resolution structural MRI and DTI of the human brainstem acquired postmortem reveals its basic cyto- and myeloar-chitectonic organization, only visualized to this moment by histological techniques and higher magnetic field strengths. Brainstem structures that are usually not observed with lower magnetic fields were now topographically identified at midbrain, pons, and medullar levels. The application of high-resolution structural MRI will contribute to precisely determine the extension and topography of brain lesions. Indeed, the current findings will be useful to interpret future high-resolution in vivo MRI studies in living humans.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center