Format

Send to

Choose Destination
EMBO J. 2011 May 3;30(12):2350-63. doi: 10.1038/emboj.2011.139.

AT1R-CB₁R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II.

Author information

1
Department of Pharmacology and Systems Therapeutics, New York Mount Sinai School of Medicine, New York, NY, USA.

Abstract

The mechanism of G protein-coupled receptor (GPCR) signal integration is controversial. While GPCR assembly into hetero-oligomers facilitates signal integration of different receptor types, cross-talk between Gαi- and Gαq-coupled receptors is often thought to be oligomerization independent. In this study, we examined the mechanism of signal integration between the Gαi-coupled type I cannabinoid receptor (CB(1)R) and the Gαq-coupled AT1R. We find that these two receptors functionally interact, resulting in the potentiation of AT1R signalling and coupling of AT1R to multiple G proteins. Importantly, using several methods, that is, co-immunoprecipitation and resonance energy transfer assays, as well as receptor- and heteromer-selective antibodies, we show that AT1R and CB(1)R form receptor heteromers. We examined the physiological relevance of this interaction in hepatic stellate cells from ethanol-administered rats in which CB(1)R is upregulated. We found a significant upregulation of AT1R-CB(1)R heteromers and enhancement of angiotensin II-mediated signalling, as compared with cells from control animals. Moreover, blocking CB(1)R activity prevented angiotensin II-mediated mitogenic signalling and profibrogenic gene expression. These results provide a molecular basis for the pivotal role of heteromer-dependent signal integration in pathology.

PMID:
21540834
PMCID:
PMC3116274
DOI:
10.1038/emboj.2011.139
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center