Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2011 May 4;100(9):2309-17. doi: 10.1016/j.bpj.2011.03.004.

On the distribution of protein refractive index increments.

Author information

Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institutes of Health, Bethesda, Maryland, USA.


The protein refractive index increment, dn/dc, is an important parameter underlying the concentration determination and the biophysical characterization of proteins and protein complexes in many techniques. In this study, we examine the widely used assumption that most proteins have dn/dc values in a very narrow range, and reappraise the prediction of dn/dc of unmodified proteins based on their amino acid composition. Applying this approach in large scale to the entire set of known and predicted human proteins, we obtain, for the first time, to our knowledge, an estimate of the full distribution of protein dn/dc values. The distribution is close to Gaussian with a mean of 0.190 ml/g (for unmodified proteins at 589 nm) and a standard deviation of 0.003 ml/g. However, small proteins <10 kDa exhibit a larger spread, and almost 3000 proteins have values deviating by more than two standard deviations from the mean. Due to the widespread availability of protein sequences and the potential for outliers, the compositional prediction should be convenient and provide greater accuracy than an average consensus value for all proteins. We discuss how this approach should be particularly valuable for certain protein classes where a high dn/dc is coincidental to structural features, or may be functionally relevant such as in proteins of the eye.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center