Send to

Choose Destination
Microb Ecol. 2011 Oct;62(3):655-68. doi: 10.1007/s00248-011-9855-2. Epub 2011 May 3.

Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano.

Author information

Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Magnesia, Greece.


We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon-Wiener diversity index H was higher for Bacteria (1.92-4.03) than for Archaea (0.99-1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center