Format

Send to

Choose Destination
J Clin Invest. 2011 Jun;121(6):2436-46. doi: 10.1172/JCI44796. Epub 2011 May 2.

A dual role for the immune response in a mouse model of inflammation-associated lung cancer.

Author information

1
Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Lung cancer is the leading cause of cancer death worldwide. Both principal factors known to cause lung cancer, cigarette smoke and asbestos, induce pulmonary inflammation, and pulmonary inflammation has recently been implicated in several murine models of lung cancer. To further investigate the role of inflammation in the development of lung cancer, we generated mice with combined loss of IFN-γ and the β-common cytokines GM-CSF and IL-3. These immunodeficient mice develop chronic pulmonary inflammation and lung tumors at a high frequency. Examination of the relationship between these tumors and their inflammatory microenvironment revealed a dual role for the immune system in tumor development. The inflammatory cytokine IL-6 promoted optimal tumor growth, yet wild-type mice rejected transplanted tumors through the induction of adaptive immunity. These findings suggest a model whereby cytokine deficiency leads to oncogenic inflammation that combines with defective antitumor immunity to promote lung tumor formation, representing a unique system for studying the role of the immune system in lung tumor development.

PMID:
21537082
PMCID:
PMC3104747
DOI:
10.1172/JCI44796
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center