Format

Send to

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2011 Jul 7;11(13):2182-8. doi: 10.1039/c1lc20077a. Epub 2011 Apr 28.

Dynamic control of 3D chemical profiles with a single 2D microfluidic platform.

Author information

1
Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.

Abstract

Dynamic control of three-dimensional (3D) chemical patterns with both high precision and high speed is important in a range of applications from chemical synthesis, flow cytometry, and multi-scale biological manipulation approaches. A central challenge in controlling 3D chemical patterns is the inability to create rapidly tunable 3D profiles with simple and direct approaches that avoid complicated microfabrication. Here, we present the ability to rapidly and precisely create 3D chemical patterns using a single two-dimensional (2D) microfluidic platform. We are not only able to create these 3D patterns, but can rapidly switch from one mode to another (e.g. from a focused to a defocused pattern in less than 1 second) via simple changes in inlet pressures. A feedback control scheme with a pressure modulation mechanism controls the pressure changes. In addition to experiments, we conducted computational simulations for guiding the optimum design of the channels as well as revealing the sensitivity of the patterns to the channel dimensions; these simulations have high experimental correlations. We also show that microvortices play an important role in creating these tunable 3D patterns in this microfluidic platform. We quantitatively determine the degrees of the focused patterns in 2D cross-sections using a focus index with a 2D Gaussian function. Our integrated approach combining feedback control with simple microfluidics will be useful for researchers in diverse disciplines including chemistry, engineering, physics, and biology.

PMID:
21528131
DOI:
10.1039/c1lc20077a
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center