Send to

Choose Destination
Ann Neurol. 2011 Apr;69(4):602-18. doi: 10.1002/ana.22415.

The complex world of oligodendroglial differentiation inhibitors.

Author information

Department of Neurology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.


Myelination is a central nervous system (CNS) process wherein oligodendrocyte-axon interactions lead to the establishment of myelin sheaths that stabilize, protect, and electrically insulate axons. In inflammatory demyelinating diseases such as multiple sclerosis (MS), the degeneration and eventual loss of functional myelin sheaths slows and blocks saltatory conduction in axons, which results in clinical impairment. However, remyelination can occur, and lesions can be partially repaired, resulting in clinical remission. The recruitment and activation of resident oligodendrocyte precursor cells (OPCs) play a critical role in the repair process because these cells have the capacity to differentiate into functional myelinating cells. Mature oligodendrocytes, however, are thought to have lost the capacity to develop new myelin sheaths and frequently undergo programmed cell death in MS. The endogenous capacity to generate new oligodendrocytes in MS is limited, and this is predominantly due to the presence of inhibitory components that block OPC differentiation and maturation. Here, we present an overview of recently identified negative regulators of oligodendroglial differentiation and their potential relevance for CNS repair in MS. Because currently available immunomodulatory drugs for MS mainly target inflammatory cascades outside the brain and fail to repair existing lesions, achieving more efficient lesion repair constitutes an important goal for future MS therapies.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center