Send to

Choose Destination
Hum Genet. 2011 Jun;129(6):585-95. doi: 10.1007/s00439-011-0993-x. Epub 2011 Apr 26.

Statistical approaches for the analysis of DNA methylation microarray data.

Author information

Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA 90089, USA.


Following the rapid development and adoption in DNA methylation microarray assays, we are now experiencing a growth in the number of statistical tools to analyze the resulting large-scale data sets. As is the case for other microarray applications, biases caused by technical issues are of concern. Some of these issues are old (e.g., two-color dye bias and probe- and array-specific effects), while others are new (e.g., fragment length bias and bisulfite conversion efficiency). Here, I highlight characteristics of DNA methylation that suggest standard statistical tools developed for other data types may not be directly suitable. I then describe the microarray technologies most commonly in use, along with the methods used for preprocessing and obtaining a summary measure. I finish with a section describing downstream analyses of the data, focusing on methods that model percentage DNA methylation as the outcome, and methods for integrating DNA methylation with gene expression or genotype data.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center