Format

Send to

Choose Destination
See comment in PubMed Commons below
Malar J. 2011 Apr 24;10:102. doi: 10.1186/1475-2875-10-102.

Molecular epidemiology of Plasmodium vivax anti-folate resistance in India.

Author information

1
Genetics and Molecular Biology Laboratory, National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India.

Abstract

BACKGROUND:

Sulphadoxine and pyrimethamine are anti-folate drugs that show synergistic anti-malarial effect. Point mutations in dihydrofolate reductase (dhfr) and dihydropteorate synthatase (dhps) cause anti-folate drug resistance phenotype in human malaria parasites. This study presents pattern of point mutations in dhfr/dhps genes among Indian sub-continent.

METHODS:

Microscopically diagnosed one hundred Plasmodium vivax field isolates were collected from five widely separated geographical regions of India. Dhfr and dhps genes were PCR amplified and sequenced. Previously published mutations data were collected and analyzed using Chi square test to identify geographical cluster of mutant/wild type genotypes.

RESULTS:

Sequence analysis revealed single (S58R), double (S58R/S117N) and quadruple (F57L/S58R/T61M/S117T/) point mutations at dhfr and single (A383G) to double (A383G/A553G) mutations at dhps in P. vivax field isolates. In addition, three new mutations were also observed at dhfr. Both, dhfr and dhps genes revealed tandem repeat variations in field isolates. Dhps revealed very low mutation frequency (14.0%) compared to dhfr (50.70%). Comparative analysis revealed a progressive increase in frequency of quadruple mutant dhfr genotype (p<0.001) within five years in north-eastern state (Kamrup, Assam). Frequency of dhfr genotypes revealed three distinct geographical clusters of wild (northern India), double mutant (southern India), and quadruple mutant (north-eastern and island regions of India) on the Indian sub-continent.

CONCLUSION:

Study suggests that SP may be susceptible to P. vivax in India, except Andaman and north-eastern state. The distinction of geographical regions with sensitive and resistant parasite phenotypes would be highly useful for designing and administering national anti-malarial drug policy.

PMID:
21513569
PMCID:
PMC3098820
DOI:
10.1186/1475-2875-10-102
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Secondary source ID

Publication type

MeSH terms

Substances

Secondary source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center