Format

Send to

Choose Destination
See comment in PubMed Commons below
J Atheroscler Thromb. 2011;18(8):670-83. Epub 2011 Apr 21.

Activation of receptor for advanced glycation end products induces osteogenic differentiation of vascular smooth muscle cells.

Author information

1
Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.

Abstract

AIM:

Vascular calcification is prevalent in patients with diabetes and chronic kidney disease. Receptor for advanced glycation end products (RAGE) and its multiple ligands have been implicated in the pathogenesis of accelerated atherosclerosis; however, little is known about the effects of RAGE activation on vascular calcification.

METHODS AND RESULTS:

Cultured rat and human aortic smooth muscle cells (HASMC) were transduced with adenovirus expressing RAGE. Expression of myocardin and the SMC-marker genes was significantly repressed in these cells. RAGE activation inhibited myocardin-induced expression of the SMC genes in mouse embryonic mesenchymal C3H10T1/2 cells. Interestingly, RAGE activation induced alkaline phosphatase (ALP) expression, calcium deposition, and Msx2 expression, a crucial transcription factor for osteogenic differentiation, in HASMC. RAGE-induced osteogenic differentiation was significantly inhibited by endogenous secretory RAGE. RAGE-induced ALP and Msx2 expression was completely abrogated by DAPT, an inhibitor of the Notch signaling pathway. PD98059 (MEK inhibitor) effectively blunted RAGE-induced Notch1 and Msx2 gene expression. Simultaneous stimulation with bone morphogenetic protein 2 (BMP2) and RAGE signaling synergistically induced expressions of Msx2 and ALP in HASMC. Immunohistochemistry revealed that the human calcifying atherosclerotic plaque expressed RAGE, Notch components and Msx2. The ALP activity induced in RAGE-overexpressing HASMCs by human serum was positively correlated with the serum creatinine level, but not with phosphate and hemoglobin A1c levels.

CONCLUSIONS:

These results indicate that activation of RAGE not only inhibits myocardin-dependent SMC gene expression, but also induces osteogenic differentiation of vascular SMC through Notch/Msx2 induction. These results provide a novel insight into the role of RAGE axis in vascular calcification.

PMID:
21512281
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center