Format

Send to

Choose Destination
Syst Appl Microbiol. 2011 Jun;34(4):243-59. doi: 10.1016/j.syapm.2011.02.001. Epub 2011 Apr 16.

A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria.

Author information

1
Max Planck Institute for Marine Microbiology, Bremen, Germany. vsalman@mpi-bremen.de

Abstract

The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families.

PMID:
21498017
DOI:
10.1016/j.syapm.2011.02.001
[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Secondary source ID

Publication types

MeSH terms

Substances

Secondary source ID

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center