Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Biotechnol. 2011 Aug;22(4):590-4. doi: 10.1016/j.copbio.2011.03.007. Epub 2011 Apr 14.

Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering.

Author information

University of California, San Diego, Department of Bioengineering, La Jolla, CA 92039, United States.


Adaptive laboratory evolution (ALE) strategies allow for the metabolic engineering of microorganisms by combining genetic variation with the selection of beneficial mutations in an unbiased fashion. These ALE strategies have been proven highly effective in the optimization of production strains. In contrast to rational engineering strategies and directed modification of specific enzymes, ALE has the advantage of letting nonintuitive beneficial mutations occur in many different genes and regulatory regions in parallel. So far, the majority of applications of ALE in metabolic engineering have used well-characterized platform organisms such as Saccharomyces cerevisiae and Escherichia coli; however, applications for other microorganisms are on the rise. This review will focus on current applications of ALE as a tool for metabolic engineering and discuss advancements and achievements that have been made in this field.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center