Format

Send to

Choose Destination
Hum Reprod. 2011 Jul;26(7):1925-35. doi: 10.1093/humrep/der082. Epub 2011 Apr 12.

PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization.

Author information

1
GENOMA-Molecular Genetics Laboratory, Rome, Italy. fiorentino@laboratoriogenoma.it

Abstract

BACKGROUND:

Fluorescence in situ hybridization (FISH) is the most widely used method for detecting unbalanced chromosome rearrangements in preimplantation embryos but it is known to have several technical limitations. We describe the clinical application of a molecular-based assay, array comparative genomic hybridization (array-CGH), to simultaneously screen for unbalanced translocation derivatives and aneuploidy of all 24 chromosomes.

METHODS:

Cell biopsy was carried out on cleavage-stage embryos (Day 3). Single cells were first lysed and DNA amplified by whole-genome amplification (WGA). WGA products were then processed by array-CGH using 24sure + arrays, BlueGnome. Balanced/normal euploid embryos were then selected for transfer on Day 5 of the same cycle.

RESULTS:

Twenty-eight consecutive cycles of preimplantation genetic diagnosis were carried out for 24 couples carrying 18 different balanced translocations. Overall, 187/200 (93.5%) embryos were successfully diagnosed. Embryos suitable for transfer were identified in 17 cycles (60.7%), with transfer of 22 embryos (mean 1.3 ± 0.5). Twelve couples achieved a clinical pregnancy (70.6% per embryo transfer), with a total of 14 embryos implanted (63.6% per transferred embryo). Three patients delivered three healthy babies, during writing, the other pregnancies (two twins and seven singletons) are ongoing beyond 20 weeks of gestation.

CONCLUSIONS:

The data obtained demonstrate that array-CGH can detect chromosome imbalances in embryos, also providing the added benefit of simultaneous aneuploidy screening of all 24 chromosomes. Array-CGH has the potential to overcome several inherent limitations of FISH-based tests, providing improvements in terms of test performance, automation, sensitivity and reliability.

PMID:
21489979
DOI:
10.1093/humrep/der082
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center