Format

Send to

Choose Destination
See comment in PubMed Commons below
J Colloid Interface Sci. 2011 Jul 1;359(1):95-103. doi: 10.1016/j.jcis.2011.03.043. Epub 2011 Mar 16.

Particle interactions in kaolinite suspensions and corresponding aggregate structures.

Author information

1
Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112, USA. Vishal.Gupta@utah.edu

Abstract

The surface charge densities of the silica face surface and the alumina face surface of kaolinite particles, recently determined from surface force measurements using atomic force microscopy, show a distinct dependence on the pH of the system. The silica face was found to be negatively charged at pH>4, whereas the alumina face surface was found to be positively charged at pH<6, and negatively charged at pH>8. The surface charge densities of the silica face and the alumina face were utilized in this study to determine the interaction energies between different surfaces of kaolinite particles. Results indicate that the silica face-alumina face interaction is dominant for kaolinite particle aggregation at low pH. This face-face association increases the stacking of kaolinite layers, and thereby promotes the edge-face (edge-silica face and edge-alumina face) and face-face (silica face-alumina face) associations with increasing pH, and hence the maximum shear-yield stress at pH 5-5.5. With further increase in pH, the face-face and edge-face association decreases due to increasing surface charge density on the silica face and the edge surfaces, and decreasing surface charge density on the alumina face. At high pH, all kaolinite surfaces become negatively charged, kaolinite particles are dispersed, and the suspension is stabilized. The face-face association at low pH has been confirmed from cryo-SEM images of kaolinite aggregates taken from suspension which show that the particles are mostly organized in a face-face and edge-face manner. At higher pH conditions, the cryo-SEM images of the kaolinite aggregates reveal a lower degree of consolidation and the edge-edge association is evident.

PMID:
21489550
DOI:
10.1016/j.jcis.2011.03.043
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center