Format

Send to

Choose Destination
PLoS One. 2011 Mar 29;6(3):e17914. doi: 10.1371/journal.pone.0017914.

Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: Fura-2AM measurements and stochastic model simulations.

Author information

1
Department of Signal Processing, Tampere University of Technology, Tampere, Finland. eeva.toivari@tut.fi

Abstract

BACKGROUND:

To better understand the complex molecular level interactions seen in the pathogenesis of Alzheimer's disease, the results of the wet-lab and clinical studies can be complemented by mathematical models. Astrocytes are known to become reactive in Alzheimer's disease and their ionic equilibrium can be disturbed by interaction of the released and accumulated transmitters, such as serotonin, and peptides, including amyloid- peptides (A). We have here studied the effects of small amounts of A25-35 fragments on the transmitter-induced calcium signals in astrocytes by Fura-2AM fluorescence measurements and running simulations of the detected calcium signals.

METHODOLOGY/PRINCIPAL FINDINGS:

Intracellular calcium signals were measured in cultured rat cortical astrocytes following additions of serotonin and glutamate, or either of these transmitters together with A25-35. A25-35 increased the number of astrocytes responding to glutamate and exceedingly increased the magnitude of the serotonin-induced calcium signals. In addition to A25-35-induced effects, the contribution of intracellular calcium stores to calcium signaling was tested. When using higher stimulus frequency, the subsequent calcium peaks after the initial peak were of lower amplitude. This may indicate inadequate filling of the intracellular calcium stores between the stimuli. In order to reproduce the experimental findings, a stochastic computational model was introduced. The model takes into account the major mechanisms known to be involved in calcium signaling in astrocytes. Model simulations confirm the principal experimental findings and show the variability typical for experimental measurements.

CONCLUSIONS/SIGNIFICANCE:

Nanomolar A25-35 alone does not cause persistent change in the basal level of calcium in astrocytes. However, even small amounts of A25-35, together with transmitters, can have substantial synergistic effects on intracellular calcium signals. Computational modeling further helps in understanding the mechanisms associated with intracellular calcium oscillations. Modeling the mechanisms is important, as astrocytes have an essential role in regulating the neuronal microenvironment of the central nervous system.

PMID:
21483471
PMCID:
PMC3066169
DOI:
10.1371/journal.pone.0017914
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center