Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2011 May 1;45(9):3959-66. doi: 10.1021/es1042832. Epub 2011 Apr 7.

Adsorption and surface complexation study of L-DOPA on Rutile (α-TiO₂) in NaCl solutions.

Author information

1
Department of Chemistry, Barnard College, New York, New York 10027, USA.

Abstract

Dihydroxyphenylalanine (DOPA) and similar molecules are of considerable interest in studies of bioadhesion to minerals, solar cells involving titanium dioxide, and biomedical imaging. However, the extent and mechanisms of DOPA adsorption on oxides in salt solutions are unknown. We report measurements of DOPA adsorption on well-characterized rutile (α-TiO₂) particles over a range of pH, ionic strength, and surface coverage as well as a surface complexation model analysis establishing the stoichiometry, model surface speciation, and thermodynamic equilibrium constants, which permits predictions in more complex systems. DOPA forms two surface species on rutile, the proportions of which vary strongly with pH but weakly with ionic strength and surface loading. At pH < 4.5 a species involving four attachment points ("lying down") is important, whereas at pH > 4.5 a species involving only two attachment points via the phenolic oxygens ("standing up") predominates. Based on evidence of strong attachment of DOPA to titanium dioxide from single molecule AFM (Lee, H. et al., Proc. Natl. Acad. Sci.2006, 103, 12999-12003) and studies of catechol adsorption, one or more of the DOPA attachments for each species is inner-sphere, the others are likely to be H-bonds.

PMID:
21473618
DOI:
10.1021/es1042832
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center