Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Appl Physiol. 2012 Jan;112(1):33-42. doi: 10.1007/s00421-011-1946-8. Epub 2011 Apr 7.

The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men.

Author information

1
Department of Kinesiology, Indiana University, Bloomington, IN 47405, USA. bj33@indiana.edu

Abstract

The aim of this investigation was to establish whether changes in oxidative stress and endothelial function following acute aerobic exercise are dose-dependent. Ten healthy trained men completed four exercise sessions: 50% VO(2peak) for 30 min (moderate intensity moderate duration, MIMD), 50% VO(2peak) for 60 min (moderate intensity long duration, MILD), 80% VO(2peak) for 30 min (high intensity moderate duration, HIMD), and 80% VO(2peak) for the time to reach the caloric equivalent of MIMD (high intensity short duration, HISD). Thiobarbituric acid reactive substances (TBARS) were measured as an index of oxidative stress and brachial artery flow-mediated dilation (FMD) was assessed as an index of endothelial function. Variables were measured at baseline, immediately post-exercise, 1 and 2 h post-exercise. Both HIMD (14.2 ± 2.5 μmol/L) and HISD (14.7 ± 1.9 μmol/L) TBARS differed from MIMD (11.8 ± 1.5 μmol/L) immediately post-exercise. TBARS increased from pre to immediately post-exercise for HIMD (12.6 ± 2.1 vs.14.2 ± 2.5 μmol/L) and HISD (12.3 ± 2.8 vs. 14.7 ± 1.9 μmol/L). Both MIMD (7.2 ± 2.2%) and HISD (7.6 ± 2.7%) FMD immediately post-exercise were greater than HIMD (4.7 ± 2.2%). An increase of FMD from pre to immediately post-exercise was found for MIMD (5.0 ± 2.5 vs. 7.2 ± 2.2%) and HISD (5.9 ± 2.4 vs. 7.6 ± 2.7%). These data suggest that acute exercise-induced TBARS are exercise intensity-dependent whereas FMD appears to improve following energy expenditure equivalent to 30 min 50% VO(2peak), regardless of intensity or duration.

PMID:
21472439
DOI:
10.1007/s00421-011-1946-8
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center