Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 May 27;286(21):18825-33. doi: 10.1074/jbc.M110.202119. Epub 2011 Apr 5.

Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly.

Author information

  • 1Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024, USA.


Spt5 is a transcription factor conserved in all three domains of life. Spt5 homologues from bacteria and archaea bind the largest subunit of their respective RNA polymerases. Here we demonstrate that Spt5 directly associates with RNA polymerase (Pol) I and RNA Pol II in yeast through its central region containing conserved NusG N-terminal homology and KOW domains. Deletion analysis of SPT5 supports our biochemical data, demonstrating the importance of the KOW domains in Spt5 function. Far Western blot analysis implicates A190 of Pol I as well as Rpb1 of Pol II in binding Spt5. Three additional subunits of Pol I may also participate in this interaction. One of these subunits, A49, has known roles in transcription elongation by Pol I. Interestingly, spt5 truncation mutations suppress the cold-sensitive phenotype of rpa49Δ strain, which lacks the A49 subunit in the Pol I complex. Finally, we observed that Spt5 directly binds to an essential Pol I transcription initiation factor, Rrn3, and to the ribosomal RNA. Based on these data, we propose a model in which Spt5 is recruited to the rDNA early in transcription and propose that it plays an important role in ribosomal RNA synthesis through direct binding to the Pol I complex.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center