Format

Send to

Choose Destination
Exp Mol Med. 2011 May 31;43(5):298-304. doi: 10.3858/emm.2011.43.5.031.

miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1.

Author information

1
Laboratory of Molecular and Genomic Medicine, Department of Biomedical Sciences, Seoul National University College of Medicine, Korea.

Abstract

The activation of nuclear factor-kappa B1 (NFkB1) in cancer cells may confer resistance to ionizing radiation (IR). To enhance the therapeutic efficiency of IR in lung cancer, we screened for microRNAs (miRNAs) that suppress NFkB1 and observed their effects on radiosensitivity in a human lung cancer cell line. From time series data of miRNA expression in γ-irradiated H1299 human lung cancer cells, we found that the expression of miR-9 was inversely correlated with that of NFκB1. Overexpression of miR-9 down-regulated the level of NFκB1 in H1299 cells, and the surviving fraction of γ-irradiated cells was decreased. Interestingly, let-7g also suppressed the expression of NFκB1, although there was no canonical target site for let-7g in the NFκB1 3' untranslated region. From these results, we conclude that the expression of miR-9 and let-7g could enhance the efficiency of radiotherapy for lung cancer treatment through the inhibition of NFκB1.

PMID:
21464588
PMCID:
PMC3104252
DOI:
10.3858/emm.2011.43.5.031
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center