Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2011 Jun;77(11):3749-56. doi: 10.1128/AEM.02818-10. Epub 2011 Apr 1.

Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines.

Author information

Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky Straße, 9-11, D-26129 Oldenburg, Germany.


In abandoned coal mines, methanogenic archaea are responsible for the production of substantial amounts of methane. The present study aimed to directly unravel the active methanogens mediating methane release as well as active bacteria potentially involved in the trophic network. Therefore, the stable-isotope-labeled precursors of methane, [(13)C]acetate and H(2)-(13)CO(2), were fed to liquid cultures from hard coal and mine timber from a coal mine in Germany. Guided by methane production rates, samples for DNA stable-isotope probing (SIP) with subsequent quantitative PCR and denaturing gradient gel electrophoretic (DGGE) analyses were taken over 6 months. Surprisingly, the formation of [(13)C]methane was linked to acetoclastic methanogenesis in both the [(13)C]acetate- and the H(2)-(13)CO(2)-amended cultures of coal and timber. H(2)-(13)CO(2) was used mainly by acetogens related to Pelobacter acetylenicus and Clostridium species. Active methanogens, closely affiliated with Methanosarcina barkeri, utilized the readily available acetate rather than the thermodynamically more favorable hydrogen. Thus, the methanogenic microbial community appears to be highly adapted to the low-H(2) conditions found in coal mines.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Secondary source ID

Publication type

MeSH terms


Secondary source ID

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center