Format

Send to

Choose Destination
Biomed Microdevices. 2011 Aug;13(4):613-21. doi: 10.1007/s10544-011-9531-9.

A new integrated system combining atomic force microscopy and micro-electrode array for measuring the mechanical properties of living cardiac myocytes.

Author information

1
Department of Biophysical and Electronic Engineering, Università di Genova, Via Opera Pia 11a, 16145 Genova, Italy.

Abstract

In this paper we present a new experimental set-up which combines the surface characterization capabilities of atomic force microscopy at the sub-micrometer scale with non-invasive electrophysiological measurements obtained by using planar micro-electrode arrays. In order to show the potential of the combined measurements we studied the changes in cell topography and elastic properties of cardiac muscle cells as during the contraction-relaxation cycle. The onset of each beating cycle was precisely identified by the use of the extracellular potential signal, allowing us to combine nanomechanical measurements from multiple cardiomyocyte contractions in order to analyze the time-dependent variation of cell morphology and elasticity. Moreover, by estimating the elastic modulus at different indentation depths in a single location on the cell membrane, we observed a dynamic mechanical behavior that could be related to the underlying myofibrillar structure dynamics.

PMID:
21455755
DOI:
10.1007/s10544-011-9531-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center