Send to

Choose Destination
J Comp Neurol. 2011 Jun 1;519(8):1580-96. doi: 10.1002/cne.22587.

Major isoform of zebrafish P0 is a 23.5 kDa myelin glycoprotein expressed in selected white matter tracts of the central nervous system.

Author information

Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15217, USA.


The zebrafish mpz gene, encoding the ortholog of mammalian myelin protein zero, is expressed in oligodendrocytes of the zebrafish central nervous system (CNS). The putative gene product, P0, has been implicated in promoting axonal regeneration in addition to its proposed structural functions in compact myelin. We raised novel zebrafish P0-specific antibodies and established that P0 is a 23.5 kDa glycoprotein containing a 3 kDa N-linked carbohydrate moiety. P0 was localized to myelin sheaths surrounding axons, but was not detected in the cell bodies or proximal processes of oligodendrocytes. Many white matter tracts in the adult zebrafish CNS were robustly immunoreactive for P0, including afferent visual and olfactory pathways, commissural and longitudinal tracts of the brain, and selected ascending and descending tracts of the spinal cord. P0 was first detected during development in premyelinating oligodendrocytes of the ventral hindbrain at 48 hours postfertilization (hpf). By 72 hpf, short segments of longitudinally oriented P0-immunoreactive myelinating axons were seen in the hindbrain; expression in the spinal cord, optic pathways, hindbrain commissures, midbrain, and peripheral nervous system followed. The mpz transcript was found to be alternatively spliced, giving rise to P0 isoforms with alternative C-termini. The 23.5 kDa isoform was most abundant in the CNS, but other isoforms predominated in the myelin sheath surrounding the Mauthner axon. These data provide a detailed account of P0 expression and demonstrate novel P0 isoforms, which may have discrete functional properties. The restriction of P0 immunoreactivity to myelin sheaths indicates that the protein is subject to stringent intracellular compartmentalization, which likely occurs through posttranslational mechanisms.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center