Send to

Choose Destination
Eur J Appl Physiol. 2011 Dec;111(12):2987-95. doi: 10.1007/s00421-011-1919-y. Epub 2011 Mar 30.

Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game.

Author information

Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark.


The aim of this study was to examine maximal voluntary knee-extensor contraction force (MVC force), sarcoplasmic reticulum (SR) function and muscle glycogen levels in the days after a high-level soccer game when players ingested an optimised diet. Seven high-level male soccer players had a vastus lateralis muscle biopsy and a blood sample collected in a control situation and at 0, 24, 48 and 72 h after a competitive soccer game. MVC force, SR function, muscle glycogen, muscle soreness and plasma myoglobin were measured. MVC force sustained over 1 s was 11 and 10% lower (P < 0.05) after 0 and 24 h, respectively, compared with control. The rate of SR Ca(2+) uptake at 800 nM [Ca(2+)](free) was lower (P < 0.05) after 0 h (2.5 μmol Ca(2+) g prot(-1) min(-1)) than for all other time points (24 h: 5.1 μmol Ca(2+) g prot(-1) min(-1)). However, SR Ca(2+) release rate was not affected. Plasma myoglobin was sixfold higher (P < 0.05) immediately after the game, but normalised 24 h after the game. Quadriceps muscle soreness (0-10 VAS-scale) was higher (P < 0.05) after 0 h (3.6), 24 h (1.8), 48 h (1.1) and 72 h (1.4) compared with control (0.1). Muscle glycogen was 57 and 27% lower (P < 0.001) 0 and 24 h after the game compared with control (193 and 328 vs. 449 mmol kg d w(-1)). In conclusion, maximal voluntary contraction force and SR Ca(2+) uptake were impaired and muscle soreness was elevated after a high-level soccer game, with faster recovery of SR function in comparison with MVC force, soreness and muscle glycogen.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center