Format

Send to

Choose Destination
PLoS Comput Biol. 2011 Mar;7(3):e1002009. doi: 10.1371/journal.pcbi.1002009. Epub 2011 Mar 17.

No need for a cognitive map: decentralized memory for insect navigation.

Author information

1
Biological Cybernetics, and Center for Excellence CITEC, University of Bielefeld, Bielefeld, Germany. Holk.Cruse@Uni-Bielefeld.de

Abstract

In many animals the ability to navigate over long distances is an important prerequisite for foraging. For example, it is widely accepted that desert ants and honey bees, but also mammals, use path integration for finding the way back to their home site. It is however a matter of a long standing debate whether animals in addition are able to acquire and use so called cognitive maps. Such a 'map', a global spatial representation of the foraging area, is generally assumed to allow the animal to find shortcuts between two sites although the direct connection has never been travelled before. Using the artificial neural network approach, here we develop an artificial memory system which is based on path integration and various landmark guidance mechanisms (a bank of individual and independent landmark-defined memory elements). Activation of the individual memory elements depends on a separate motivation network and an, in part, asymmetrical lateral inhibition network. The information concerning the absolute position of the agent is present, but resides in a separate memory that can only be used by the path integration subsystem to control the behaviour, but cannot be used for computational purposes with other memory elements of the system. Thus, in this simulation there is no neural basis of a cognitive map. Nevertheless, an agent controlled by this network is able to accomplish various navigational tasks known from ants and bees and often discussed as being dependent on a cognitive map. For example, map-like behaviour as observed in honey bees arises as an emergent property from a decentralized system. This behaviour thus can be explained without referring to the assumption that a cognitive map, a coherent representation of foraging space, must exist. We hypothesize that the proposed network essentially resides in the mushroom bodies of the insect brain.

PMID:
21445233
PMCID:
PMC3060166
DOI:
10.1371/journal.pcbi.1002009
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center