Format

Send to

Choose Destination
Nanotechnology. 2011 May 13;22(19):195102. doi: 10.1088/0957-4484/22/19/195102. Epub 2011 Mar 24.

Small unilamellar vesicles: a platform technology for molecular imaging of brain tumors.

Author information

1
Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada.

Abstract

Molecular imaging enables the non-invasive investigation of cellular and molecular processes. Although there are challenges to overcome, the development of targeted contrast agents to increase the sensitivity of molecular imaging techniques is essential for their clinical translation. In this study, spontaneously forming, small unilamellar vesicles (sULVs) (30 nm diameter) were used as a platform to build a bimodal (i.e., optical and magnetic resonance imaging (MRI)) targeted contrast agent for the molecular imaging of brain tumors. sULVs were loaded with a gadolinium (Gd) chelated lipid (Gd-DPTA-BOA), functionalized with targeting antibodies (anti-EGFR monoclonal and anti-IGFBP7 single domain), and incorporated a near infrared dye (Cy5.5). The resultant sULVs were characterized in vitro using small angle neutron scattering (SANS), phantom MRI and dynamic light scattering (DLS). Antibody targeted and nontargeted Gd loaded sULVs labeled with Cy5.5 were assessed in vivo in a brain tumor model in mice using time domain optical imaging and MRI. The results demonstrated that a spontaneously forming, nanosized ULVs loaded with a high payload of Gd can selectively target and image, using MR and optical imaging, brain tumor vessels when functionalized with anti-IGFBP7 single domain antibodies. The unique features of these targeted sULVs make them promising molecular MRI contrast agents.

PMID:
21436507
DOI:
10.1088/0957-4484/22/19/195102
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center