Send to

Choose Destination
J Appl Physiol (1985). 2011 Jun;110(6):1555-63. doi: 10.1152/japplphysiol.00420.2010. Epub 2011 Mar 24.

Relationship between performance at different exercise intensities and skeletal muscle characteristics.

Author information

Dept. of Exercise and Sport Sciences, Section of Human Physiology, August Krogh Bldg., Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.


The hypothesis investigated whether exercise performance over a broad range of intensities is determined by specific skeletal muscle characteristics. Seven subjects performed 8-10 exhaustive cycle trials at different workloads, ranging from 150 to 700 W (150 min to 20 s). No relationships between the performance times at high and low workloads were observed. A relationship (P < 0.05) was noticed between the percentage of fast-twitch x fibers and the exercise time at 579 ± 21 W (∼30 s; r(2) = 0.88). Capillary-to-fiber-ratio (r(2): 0.58-0.85) was related (P < 0.05) to exercise time at work intensities ranging from 395 to 270 W (2.5-21 min). Capillary density was correlated (r(2) = 0.68; P < 0.05) with the net rate of plasma K(+) accumulation during an ∼3-min bout and was estimated to explain 50-80% (P < 0.05) of the total variance observed in exercise performances lasting ∼30 s to 3 min. The Na(+)-K(+) pump β(1)-subunit expression was found to account for 13-34% (P < 0.05) during exhaustive exercise of ∼1-4 min. In conclusion, exercise performance at different intensities is related to specific physiological variables. A large distribution of fast-twitch x fibers may play a role during very intense efforts, i.e., ∼30 s. Muscle capillaries and the Na(+)-K(+) pump β(1)-subunit seem to be important determinants for performance during exhaustive high-intensity exercises lasting between 30 s and 4 min.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center