Send to

Choose Destination
J Am Chem Soc. 2011 Apr 20;133(15):5941-6. doi: 10.1021/ja110939a. Epub 2011 Mar 24.

Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability.

Author information

State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.


We use anhydrous ferric chloride (FeCl(3)) to intercalate graphite flakes consisting of 2-4 graphene layers and to dope graphene monolayers. The intercalant, staging, stability, and doping of the resulting intercalation compounds (ICs) are characterized by Raman scattering. The G peak of heavily doped monolayer graphene upshifts to ∼1627 cm(-1). The 2-4 layer ICs have similar upshifts, and a Lorentzian line shape for the 2D band, indicating that each layer behaves as a decoupled heavily doped monolayer. By performing Raman measurements at different excitation energies, we show that, for a given doping level, the 2D peak can be suppressed by Pauli blocking for laser energy below the doping level. Thus, multiwavelength Raman spectroscopy allows a direct measurement of the Fermi level, complementary to that derived by performing measurements at fixed excitation energy significantly higher than the doping level. This allows us to estimate a Fermi level shift of up to ∼0.9 eV. These ICs are thus ideal test-beds for the physical and chemical properties of heavily doped graphenes.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center