Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2011 May 1;83(9):3282-9. doi: 10.1021/ac200407w. Epub 2011 Apr 5.

Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture".

Author information

Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.


An optical label-free biosensing platform for bacteria detection ( Escherichia coli K12 as a model system) based on nanostructured oxidized porous silicon (PSiO(2)) is introduced. The biosensor is designed to directly capture the target bacteria cells on its surface with no prior sample processing (such as cell lysis). The optical reflectivity spectrum of the PSiO(2) nanostructure displays Fabry-PĂ©rot fringes characteristic of thin-film interference, enabling direct, real-time observation of bacteria attachment within minutes. The PSiO(2) optical nanostructure is synthesized and used as the optical transducer element. The porous surface is conjugated with specific monoclonal antibodies (immunoglobulin G's) to provide the active component of the biosensor. The immobilization of the antibodies onto the biosensor system is confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, fluorescent labeling experiments, and refractive interferometric Fourier transform spectroscopy. We show that the immobilized antibodies maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these nanostructures to the target bacteria results in "direct cell capture" onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations. The current detection limit of E. coli K12 bacteria is 10(4) cells/mL within several minutes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center